Entrance Sign Foundation Calculations

Wind Loading: (ASCE 7-16 Sec. 29)	Wind Loading Governs
Risk Category I	ASCE 7-16 Table 1.5-1
Exposure Category B	ASCE 7-16 Sec. 26.7.3
$V\!\coloneqq\! 88\;rac{mi}{hr}$	ASCE 7-16 Fig. 26.5-1A
$k_d = 0.85$	ASCE 7-16 Table 26.6-1
$k_{zt} \coloneqq 1$	ASCE 7-16 Sec. 26.8
$k_e \coloneqq 1$	ASCE 7-16 Sec. 26.9
$G \coloneqq 0.85$	ASCE 7-16 Sec. 26.11
$k_z = 0.57$	ASCE 7-16 Table 26.10-1
$q_z \coloneqq 0.00256 \cdot k_z \cdot k_{zt} \cdot k_d \cdot k_e \cdot V^2 \cdot \left(\frac{\textit{lb} \cdot \textit{hr}^2}{\textit{ft}^2 \cdot \textit{mi}^2}\right) = 9$	$\frac{lb}{ft^2}$ ASCE 7-16 Eq. 26.10-1
Full Height of Sign:	
$B \coloneqq 2 \ \mathbf{ft} + \left(\frac{8 \ \mathbf{in}}{12 \ \frac{\mathbf{in}}{\mathbf{ft}}}\right) = 2.667 \ \mathbf{ft}$	Horizontal width of sign
$s \coloneqq 9 \ ft + \left(\frac{3 \ in}{12 \ \frac{in}{ft}}\right) = 9.25 \ ft$	Max height of sign
$\frac{B}{s} = 0.288$	Aspect Ratio
$C_f \coloneqq \frac{\left(1.65 - 1.55\right) \cdot \left(\frac{B}{s} - 0.5\right)}{\left(0.2 - 0.5\right)} + 1.55 = 1.621$	ASCE 7-16 Fig. 29.3-1
$A_s \coloneqq 8 \; extbf{f} extbf{t}^2$	Area of sign normal to wind
$F_{fh} \coloneqq q_z \cdot G \cdot C_f \cdot A_s = 105.846 \; \emph{lb}$	ASCE 7-16 Eq. 29.3-1

Entrance Sign Foundation Calculations

Assuming Sign Clearance:	
$B \coloneqq 2 \ ft + \left(\frac{\$ \ in}{12 \ \frac{in}{ft}}\right) = 2.667 \ ft$	Horizontal width of sign
$s \coloneqq 3 \ ft$	Max height of sign
$\frac{B}{s} = 0.889$	Aspect Ratio
$h = 7.5 \ ft$	Average Height
$\frac{s}{h} = 0.4$	Clearance Ratio
$C_f \coloneqq 1.78$	ASCE 7-16 Fig. 29.3-1
$A_s \coloneqq 8 \; extbf{ extit{f}} extbf{ extit{t}}^2$	Area of sign normal to wind
$F_{sc} \coloneqq q_z \cdot G \cdot C_f \cdot A_s = 116.259$ lb	ASCE 7-16 Eq. 29.3-1
$F\!\coloneqq\!\maxig(\!F_{fh},\!F_{sc}\!ig)\!=\!116.25$ 9 lb	
oting Embedment: (CBC Sec. 1807.3)	
$b \coloneqq 1 \ ft + \left(\frac{7 \ in}{12 \ \frac{in}{ft}}\right) = 1.583 \ ft$	Diameter of footing
$h = 5.59 \ ft + (0.05 \cdot s) = 5.74 \ ft$	Height of wind load application ASCE 7-16 Fig. 29.3-1 Note 3
$P \coloneqq F = 116.259 \ lb$	Wind loading

Entrance Sign Foundation Calculations

$S := 100 \frac{lb}{2}, 2 = 200$	lb
$S_1 = 100 \frac{lb}{ft^2} \cdot 2 = 200$	ft^2

Allowable lateral soil-bearing pressure CBC Table 1806.2 and CBC 1806.3.4

S1 can be increase per foot of embedment of depth.

S1 value based on a depth of one third of embement.

Assume depth:

$$D \coloneqq 2.8 \ ft$$

$$S_1 = S_1 \cdot \frac{D}{3} = 186.667 \frac{lb}{ft^2}$$

$$A \coloneqq \frac{2.34 \cdot P}{S_1 \cdot b} = 0.92 \ \text{ft}$$

$$d = 0.5 \cdot A \cdot \left(1 + \sqrt{1 + \left(\frac{4.36 \cdot h}{A}\right)}\right) = 2.904 \ \text{ft}$$

Req'd depth of footing CBC Eq. 18-1

<u>Use 1'-7" DIA x 3'-0" Deep</u> <u>With 4 #5 Vert and #4 Ties at 6" OC</u>

Sample Bikeways Concrete Seatwall Channel Wall Impact Calculations

$D \coloneqq 11.75 \ ft$	Minimum distance between concrete seatwall & channel wall
$H_c \coloneqq 15.5 \; ft$	Channel Wall Height
$h \coloneqq H_c - D = 3.75 \ \mathbf{ft}$	Load from seatwall wall applied heigh
$w_c \coloneqq 150 \ rac{lb}{ft^3}$	Unit weight of concrete
$\gamma_s = 120 \; \frac{lb}{ft^3}$	Unit weight of soil
$H_{cs}\coloneqq 18$ in	Height of concrete seatwall
$W_{cs} \coloneqq 1.5 \; extit{ft}$	Width of concrete seatwall
$H_{cs_fnd} := 8 in$	Height of concrete seatwall foundation
$W_{cs_fnd}\!\coloneqq\! 2\; extit{ft}$	Width of concrete seatwall foundation
$b \coloneqq 1$ ft	Unit length
$V_{cs} \coloneqq H_{cs} \cdot W_{cs} \cdot b = 2.25 \ ft^3$	Volume of concrete seatwall
$V_{cs_fnd} := H_{cs_fnd} \cdot W_{cs_fnd} \cdot b = 1.333 \ ft^3$	Volume of concrete seatwall foundati
$W_c \coloneqq V_{cs_fnd} \cdot \left(w_c - \gamma_s\right) + V_{cs} \cdot w_c = 377.5 \ \emph{lb}$ Concrete seatwall foundation is replacing equal volume of soil	Additional weight from concrete per foot of length
$P \coloneqq \frac{W_c}{\left(W_{cs_fnd} \cdot b\right)} = 188.75 \frac{lb}{ft^2}$	Additional bearing pressure from concrete seatwall
$R \coloneqq 0.33 \cdot P = 62.288 \frac{lb}{ft^2}$	Lateral pressure on channel wall from additional weight of concrete seatwall

Sample Bikeways Concrete Seatwall Channel Wall Impact Calculations

M :-	$-\frac{R \cdot h^2}{h} \cdot h$	$\left(\frac{1 \ kip}{1000 \ lb}\right) = 0.438 \ kip \cdot ft$
max_r	2	$(1000 lb)^{-3.465} lip jt$

Max moment at base of channel wall from additional weight of concrete seatwall

Existing Demand on Channel Wall:

$$EFP_{ective} = 37 \ psf$$

Active earth pressure on channel wall

$$h_{surcharge} := 2 \ ft$$

Surcharge height acting on channel wall

$$P_{active} := EFP_{active} \cdot H_c^2 = 8.889 \ kip$$

Point load from active pressure

$$P_{surcharge} \coloneqq EFP_{active} \cdot h_{surcharge} \cdot H_c = 1.147 \text{ kip}$$

Point load from surcharge

$$M_{\textit{mex_c}} \coloneqq \left(P_{\textit{active}} \cdot \frac{H_c}{3}\right) + \left(P_{\textit{surcharge}} \cdot \frac{H_c}{2}\right) = 54.817 \; \textit{kip} \cdot \textit{ft} \quad \text{Max moment at base of channel}$$

$$\frac{M_{max_r}}{M_{max_c}} = 0.008$$

Added channel loading from new concrete seatwall is within 1% of original demand

The channel walls for Big Dalton Wash and San Dimas Wash would have been originally designed for a vehicular loading surcharge. With the addition of the concrete seatwall and other landscaping improvements, it can be assumed that there will no longer be vehicular loading at the concrete seatwall locations. Therefore, the concrete seatwall will not induce additional load to the existing Big Dalton Wash and San Dimas Wash channel walls.

All other concrete seatwall locations are at a greater distance away from channel wall and/or at locations with a shorter channel wall. The calculations above consider worst case for this project.

Sample Bikeways Decomposed Granite Channel Impact Calculations

Sample Bikeways Concrete Header Channel Impact Calculations

'-6" Channel Wall, 0'-0" Distance	
$D \coloneqq 0 \ ft$	Minimum distance between concr header & channel wall
$H_c \coloneqq 15.5 \; ft$	Channel Wall Height
$w_c \coloneqq 150 \; \frac{lb}{ft^3}$	Unit weight of concrete
$\gamma_s = 120 \; rac{lb}{ft^3}$	Unit weight of soil
$H_{ch} \coloneqq 12$ in	Height of concrete header
$W_{ch} \coloneqq 6$ in	Width of concrete header
$b\coloneqq 1$ ft	Unit length
$V_{ch}\!\coloneqq\!H_{ch}\!\cdot\!W_{ch}\!\cdot\!b\!=\!0.5~m{ft}^3$	Volume of concrete header
$\begin{aligned} W_c \coloneqq V_{ch} \bullet \left(w_c - \gamma_s \right) &= 15 \ \textit{lb} \\ \textit{Concrete header is replacing} \\ \textit{equal volume of soil} \end{aligned}$	Additional weight fom concrete per foot of length
$P := \frac{W_c}{\left(W_{ch} \cdot b\right)} = 30 \frac{lb}{ft^2}$	Additional bearing pressure from concrete header
$R \coloneqq 0.33 \cdot P = 9.9 \frac{lb}{ft^2}$	Lateral pressure on channel wall from additional weight of concrete header
$M_{mex_r} := \frac{R \cdot H_c^2}{2} \cdot b \cdot \left(\frac{1 \ kip}{1000 \ lb}\right) = 1.189 \ kip \cdot ft$	Max moment at base of channel wall from additional weight of concrete header

Sample Bikeways Concrete Header Channel Impact Calculations

$EFP_{active} = 37 \ psf$	Active earth pressure on channel
	wall
$h_{surcherge} \coloneqq 2 \; ft$	Surcharge height acting on channel wall
$P_{active} := EFP_{active} \cdot H_c^2 = 8.889 \ kip$	Point load from active pressure
$P_{surcharge} \coloneqq EFP_{active} \cdot h_{surcharge} \cdot H_c = 1.147$	kip Point load from surcharge
$M_{max_c} \coloneqq \left(P_{active} \cdot \frac{H_c}{3}\right) + \left(P_{surcharge} \cdot \frac{H_c}{2}\right) = 8$	$54.817~kip \cdot ft$ Max moment at base of char
M_{max_r} 0.022 Added shappel leading	
$\frac{M_{max_r}}{M_{max_c}}$ = 0.022 Added channel loading is within 5% of original	g from new concrete header al demand
M_{max_c} is within 5% of original is within 5% of original is within 5% of original M_{max_c} originally designed for a vehicular loading sconcrete header and other landscaping impossible M_{max_c} will no longer be vehicular loading at the concrete header will not induce additional M_{max_c} San Dimas M_{max_c} wash channel walls.	al demand If San Dimas Wash would have been surcharge. With the addition of the provements, it can be assumed that there concrete header locations. Therefore, the
The channel walls for Big Dalton Wash and originally designed for a vehicular loading sconcrete header and other landscaping impwill no longer be vehicular loading at the concrete header will not induce additional in	If San Dimas Wash would have been surcharge. With the addition of the provements, it can be assumed that there concrete header locations. Therefore, the load to the existing Big Dalton Wash and
The channel walls for Big Dalton Wash and originally designed for a vehicular loading sconcrete header and other landscaping impwill no longer be vehicular loading at the concrete header will not induce additional in San Dimas Wash channel walls. All other concrete header locations are at a and/or at locations with a shorter channel	If San Dimas Wash would have been surcharge. With the addition of the provements, it can be assumed that there concrete header locations. Therefore, the load to the existing Big Dalton Wash and

Bollard:	
5'-6" Channel Wall, 1'-6" Distance	
$D \coloneqq 1.667 \; ft$	Minimum distance between bollard channel wall
$H_c\!\coloneqq\!15.5~ extit{ft}$	Channel Wall Height
$w_c \coloneqq 150 \; \frac{lbf}{ft^3}$	Unit weight of concrete
$\gamma_s = 120 \; \frac{lbf}{ft^3}$	Unit weight of soil
$w_p \coloneqq 18.99 \; rac{lbf}{ft}$	Unit weight of steel pipe
$d_b \coloneqq 6$ in	Diameter of bollard
$H_b \coloneqq 3 \ ft$	Height of bollard above grave
$D_b\!\coloneqq\!2.5~ extit{ft}$	Depth of bollard embedment
$D_{b_fnd}\coloneqq 3 \; ft$	Depth of bollard foundation
$d_{b_fnd} \coloneqq 1.5 \; extbf{ft}$	Diameter of bollard foundation
$W_{b_above} \coloneqq w_p \cdot H_b + w_c \cdot \left(\frac{\boldsymbol{\pi} \cdot d_b^{\ 2}}{4}\right) \cdot H_b = 145.327 \ \textit{lbf}$	Weight of bollard above grade
$V_{b_fnd} \coloneqq \frac{oldsymbol{\pi} \cdot d_{b_fnd}^{2}}{4} \cdot D_{b_fnd} = 5.301 \ oldsymbol{ft}^{3}$	Volume of bollard foundation
$W_{b_fnd} := V_{b_fnd} \cdot w_c + D_b \cdot w_p = 842.691 \ \textit{lbf}$	Weight of bollard foundation
$\begin{aligned} W_c \coloneqq W_{b_\textit{above}} + W_{b_\textit{fnd}} - V_{b_\textit{fnd}} \cdot \gamma_s = 351.\$45 \textit{ lbf} \\ \textit{Bollard foundation is replacing} \\ \textit{equal volume of soil} \end{aligned}$	Additional weight from bollard
$P \coloneqq \frac{W_c}{\pi \cdot d_{b_fnd}^2} = 199.104 \ psf$	Additional bearing pressure from bollard

Using Boussinesq method forstrip loading to calculate the load applied to Existing Channel wall

 $\beta_{\rm R} = \beta (z/180)$

CT TRENCHING AND SHORING MANUAL

4.8.3 Boue sheeq Loads

Typically, there are three (3) types of Houseinesq Loads. They are as follows:

4.8.3.1 Strip Load

Strip loads are loads such as highways and railroads that are generally parallel to the wall.

The general equation for determining the pressure at distance is below the ground line is (See Figure 4-48):

$$\sigma_s = \frac{2Q}{\pi} [\beta_s - \sin \beta \cos(2\alpha)]$$

Eq. 4-67

Figure 4-48. Boussinesq Type Strip Load

@ 5' from top of wall:

$$\beta \coloneqq 17.9 \ deg$$

$$\alpha \coloneqq 50.4 \ deg$$

$$\beta_R := \beta = 0.312 \ rad$$

$$Q := P = 199.104 \ psf$$

$$\sigma_{h1} \coloneqq \left(\frac{2 \cdot Q}{\pi}\right) \cdot \left(\beta_R - \sin\left(\beta\right) \cdot \cos\left(2 \cdot \alpha\right)\right) = 46.9 \ psf$$

@ 7' from top of wall:

$$\beta \coloneqq 15.8 \ deg$$

$\alpha \coloneqq 31.1 \; deg$
$\beta_R \coloneqq \beta = 0.276 \; rad$
$Q := P = 199.104 \ psf$
$\sigma_{h2} \coloneqq \left(\frac{2 \cdot Q}{\pi}\right) \cdot \left(\beta_R - \sin\left(\beta\right) \cdot \cos\left(2 \cdot \alpha\right)\right) = 18.858 \ \textit{psf}$
9' from top of wall:
$\beta \coloneqq 12.3 \operatorname{deg}$
$\alpha \coloneqq 21.9 \; deg$
β_R := β =0.215 rad
$Q \coloneqq P = 199.104 \ psf$
$\sigma_{h3} \coloneqq \left(\frac{2 \cdot Q}{\pi}\right) \cdot \left(\beta_R - \sin\left(\beta\right) \cdot \mathbf{c} \cdot \mathbf{s} \cdot (2 \cdot \alpha)\right) = 7.722 \ \mathbf{psf}$
@ 11' from top of wall:
$\beta \coloneqq 10.3 deg$
$\alpha \coloneqq 16.8 deg$
β_R := β =0.18 \it{rad}
$Q := P = 199.104 \ psf$
$\sigma_{h4} \coloneqq \left(\frac{2 \cdot Q}{\pi}\right) \cdot \left(\beta_R - \sin\left(\beta\right) \cdot \cos\left(2 \cdot \alpha\right)\right) = 3.909 \ \textit{psf}$
@ 13' from top of wall:
$eta\coloneqq 8.1~deg$
$\alpha \coloneqq 13.6 deg$
$eta_R \coloneqq eta = 0.141 \; rad$
$Q := P = 199.104 \ psf$

$$\sigma_{h5} \coloneqq \left(\frac{2 \cdot Q}{\pi}\right) \cdot \left(\beta_R - \sin\left(\beta\right) \cdot \cos\left(2 \cdot \alpha\right)\right) = 2.035 \ psf$$

@ 15.5' from top of wall:

$$\beta = 6.6 \text{ deg}$$

$$\alpha \coloneqq 10.9 \ deg$$

$$\beta_R \coloneqq \beta = 0.115 \ rad$$

$$Q := P = 199.104 \ psf$$

$$\sigma_{h6} \coloneqq \left(\frac{2 \cdot Q}{\pi}\right) \cdot \left(\beta_R - \sin\left(\beta\right) \cdot \cos\left(2 \cdot \alpha\right)\right) = 1.074 \ psf$$

Average active pressure at every 2 ft to convert to retangular diagram and calculate the moment at the base of wall from the c.g. area of the rectangular active pressure

$$w_1 \coloneqq \sigma_{h1} \cdot 2 \; ft = 93.799 \; plf$$
 $h_1 \coloneqq \frac{2 \; ft}{3} + 10.5 \; ft = 11.167 \; ft$ $w_2 \coloneqq \frac{(\sigma_{h1} + \sigma_{h2})}{2} \cdot 2 \; ft = 65.757 \; plf$ $h_2 \coloneqq 9.5 \; ft$ $w_3 \coloneqq \frac{(\sigma_{h2} + \sigma_{h3})}{2} \cdot 2 \; ft = 26.579 \; plf$ $h_3 \coloneqq 7.5 \; ft$ $w_4 \coloneqq \frac{(\sigma_{h3} + \sigma_{h4})}{2} \cdot 2 \; ft = 11.631 \; plf$ $h_4 \coloneqq 5.5 \; ft$

$w_5 \coloneqq \frac{\left(\sigma_{h4} + \sigma_{h5}\right)}{2} \cdot 2 \ \textbf{\textit{ft}} = 5.944 \ \textbf{\textit{plf}}$	$h_5\!\coloneqq\!3.5\;ft$
$w_6 \coloneqq \frac{\left(\sigma_{h5} + \sigma_{h6}\right)}{2} \cdot 2 \ \textit{ft} = 3.109 \ \textit{plf}$	$h_6\!\coloneqq\!1.25\;ft$
$b \coloneqq 1$ ft	
$M_o \coloneqq \big(w_1 \cdot h_1 + w_2 \cdot h_2 + w_3 \cdot h_3 + w_4 \cdot h_4 + w_5 \cdot h_5 + w_4 \cdot h_5 \cdot h_5 + w_5 \cdot h_5 + w$	$(a \cdot h_6) \cdot b = 1.96 \ kip \cdot ft$
Existing Demand on Channel Wall:	
$H_C \coloneqq 15.5 \; ft$	Channel Wall Height
EFP _{active} :=37 psf	Active earth pressure on channel wall
$h_{surcharge} \coloneqq 2 \; ft$	Surcharge height acting on channel wall
$P_{surcharge} \coloneqq EFP_{active} \cdot h_{surcharge} \cdot H_C = 1.147 \ kip$	Point load from surcharge
$M_{max_c} \coloneqq P_{surcharge} \cdot rac{H_C}{2} = 8.889 \; kip \cdot ft$	Max moment at base of channel
$\frac{M_o}{M_{max_c}}$ = 0.221 ratio shows that the bold surcharge	lard load is less than 2 feet